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-
Spacecraft frequently
experience cost and
schedule overruns
.

Complex spacecraft are
more likely to fail or be
impaired

N\ [

)\ and manages complexity )

Better systems
engineering reduces
cost/schedule overruns

Cost and schedule overruns for selected NASA
projects between 1992 and 2007. The average
cost overrun is 27% and the average schedule
overrun is 22% with cost and schedule

overruns being correlated [1].

[1] D.L. Emmons, M. Lobbia, T. Radcliffe, and R.E. Bitten. Affordability
Assessments to Support Strategic Planning and Decisions at NASA. In

Aerospace Conference, 2010 IEEE, 2010.

Schedule Ratio

within cost and |
schedule

within 100%
overrun

Improving systems engineering in formulation will reduce
cost/schedule overruns and enable more complex missions
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@ Better systems

engineering reduces
cost/schedule overruns
\_ and manages complexity )

0 01 02 03 04 0506 07 08 09 1

Complexity Index

m Failed Missions @ Impaired MiSSIONS Expon. (Baseline Data)

Failed and impaired missions tend to be more complex than average, yet have shorter
schedules and tighter budgets than typical of project of their complexity [2].

[2] D.A. Bearden. A complexity-based risk assessment of low-cost planetary missions: when is a mission too fast and too cheap? Acta Astronautica,

52(26):371 - 379, 2003.

Improving systems engineering in formulation will reduce
cost/schedule overruns and enable more complex missions
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Spacecraft frequently Complex spacecraft are
experience cost and more likely to fail or be
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Better systems
engineering reduces

cost/schedule overruns
and manages complexity

Actual/Planned Cost

Actual/Planned Schedule

% .- 24%

SE Effort = SE Quality * SE Cost/Actual Cost

SE Effort = SE Quality * SE Cost/Actual Cost

Increased systems engineering effort can decrease cost overruns and schedule overruns.

The dashed lines represent the 90% confidence bounds [3].
[3] E.C. Honour. Understanding the Value of Systems Engineering. In Proceedings of the INCOSE International Symposium, pages 1-16, 2004.

Improving systems engineering in formulation will reduce
cost/schedule overruns and enable more complex missions
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( N ( h Better systems
Spacecraft frequently Complex spacecraft are : :
. . : engineering reduces
experience cost and more likely to fail or be
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36%

Lower SEC Middle SEC Higher SEC Lower SEC Middle SEC Higher SEC All Projects
(n=22) (n=26) (n=25) (n=26) (n=23) (n=26)

’ Gamma =0.34 p-value =0.029 ‘ ‘ Gamma =0.62 p-value < 0.001 ‘

Increased systems engineering capabilities results in better performance. The effect in higher
challenge projects is even stronger [4].

[4] Joseph P EIm and Dennis Goldenson. The Business Case for Systems Engineering Study: Results of the Systems Engineering Effectiveness Survey.
Technical report, Carnegie Mellon University, 2012.

Improving systems engineering in formulation will reduce
cost/schedule overruns and enable more complex missions
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SysML diagrams capture different types of system information.

Diagrams can be linked together [10].
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* Requirements engineering

— Implement requirements as constraints on the
model, instead of as text statements within the
model [11]

* System Description

— Using SysML allows study of more mission
concepts within the same timeframe [12]

* Integration with Analysis Tools

— Graph transformations to support dynamic
analysis in Simscape™ [13]

— Integration with Phoenix ModelCenter® allows
analysis in a range of tools [14]

11
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* Design can be thought of as a series of
decisions and MBSE can improve decision
making [5,6]

* Detecting places where future changes will
take place improves system development [7]

 MBSE allows greater insight into the system
under development [8]

— System topology currently not well captured

The topological information captured in a system model can
assist in decision making and illuminate areas of future change
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Hypothesis
Implementing model-based systems engineering will improve the design process

Research Objective

To determine if implementing model-based systems engineering results in a more
efficient design process

By comparing a hypothetical REXIS design process incorporating information from
system models against the historical REXIS design process

Methodology

* Model the REXIS design at each design milestones in SysML

* Inspect the SysML models to extract information that was not known at the time and
can improve the design process

 Measure how the information extracted from the model improves the design process
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Create SysML models of
design at points in design
history
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Inspect models to extract
information that is helpful
to the design process
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Measure how the new
information can improve
the design process
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* System models contain
topological information about
the system

— Interfaces
— Interface uncertainty

* Custom SysML extension

— Design consequences

* Custom SysML extension
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1 Interface Uncertainty

Knowledge about an interface at a point in time lies in an
abstraction hierarchy

More abstract interfaces are more uncertain
All interfaces must be at the lowest level of abstraction in a finalized
design

— Interfaces with abstraction must change

Modeled in SysML as an abstraction hierarchy of interface blocks
and association blocks

bdd [Package] Metamode! [ Interface Types BDD lJ

zinterfaceBlocks
Interface

i
| | | |

ginterfaceBlockz ainterfaceBlocks ainterfaceBlocks ainterfaceBlocks
Infermation Energy Material Spatial

einterfaceBlocks ainterfaceBlocks ainterfaceBlocks ainterfaceBlocks einterfaceBlocks einterfaceBlocks zinterfaceBlocks
RTD Resistance Optical Alignment Pin Friction Accessibility Gap Filler Clearance

zinterfaceBlocks zinterfaceBlocks zinterfaceBlocks ainterfaceBlocks ainterfaceBlochks ginterfaceBlocks

Digital Data Radiation Protection Bolt Wirebond Epoxy HNurt
zinterfaceBlockz zinterfaceBlockz zinterfaceBlockz ainterfaceblocks ainterfaceblockz zinterfaceBlockz
Analog Data Power MLI Button Solder Joint Pressure Sensitive Adhesive Connector

16
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ibd [Block] System[ Example IBD _]_J

part 3:Part 3

&g

"

Pc

zirterfaceBlock=
Interface

assembly a : Assembly A

FRroxys ERroxys
:IE:rH o e e ——

ibd [Block] System [ Digital Data Interface lJ

part 3: Part 3

T

Eproxys

assembly a: Assembly A

EProxys

[_IPurH : Irterface
|

Port 2 Interface l_'_|pﬂrt1'Part1 |

Increasing design
maturity

ibd [Block] System [ Digital Data Interface lJ

&l
Pc

i

nterfaceBlock=
Information

part 3: Part 3

Eproxys
_IPurH » Information

assembly a: Assembly A

EProxys

4

af

Pe

T

zirnterfaceBlocks
RTD Resistance

zinterfaceBlock =
Digital Data

zirnterfaceBlock=
Analog Data

Port 2 : Information I_n_l
[ |part1:Part1 |

ibd [Block] System[ Digital Data Interface J_J

part 3 : Part 3

ZProxys
_|F'urt1 . Digital Data

assembly a: Assembly A

Zproxys

[]

proxys
Part 2

. Digital Data

P“”Z:D'Q“E'Dﬁampannpam
P

Part 1
proxys

proxys

Zproxys Part 1
||

T

Part 2
[FI part 2 : Part 2

17



1T Hw , o
I I" Designh Consequence SBL

e Captures how the ramifications of requirements or design
decisions flow through the system

* Arequirement or design decision may result in:
— Components being added/removed
— Changes in properties of existing components

* Tracing design consequence reveals how each requirement
and design decision impacts the system

 Modeled in SysML using Dependencies that flow from the
source requirement or design decision through the system

Igsolation | == | e e e e - - - - — — - = 4

| «proxy 7

W Electronics Box : Spatial . detector electronics : Detector Electronics [~ — — — |
|«proxy» | : Spatial . ===
| Detector Electronics : Spatial s leproxys == = % Proxys | |

T ) i ) —-{Main Electronics Box : Spatial |, Electronics Box : Spatial [ o e lectronics board : Main Electronics Board
| electronics box : Electronics Box | | T =) |
______ : Spatial ]
|
|
|

proxy:

|
|
|
|
|

0

|

. o l
Mounting Bracket : Spatial |

< Xy» |

|

|

|

|

T

___________
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X-ray fluorescence (XRF) of Bennu
surface stimulated by incident solar
X-rays

Fluorescent line energies depend on
the electronic structure of the matter

— Provides a unique elemental
signature

— Line strengths reflect element
abundance

Photons are fluoresced from the

surface of Bennu, some of which : gf/-'
B /;—ray fluorescence

enter REXIS (XRF)

Concept heritage from NEAR,
Hayabusa

Imaging and detector heritage from ML 4 : - ke

shown to

astrophysics | s soale
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REXIS Science Goals

One of five instrument on the OSIRIS-
REx asteroid sample return mission
scheduled for launch in 2016

Measures X-rays that are fluoresced
from Bennu

Fluorescent line energies depend on
the electronic structure of the matter

— Provides a unique elemental
signature

— Line strengths reflect element

abundance Spectrometer

Lz

-ray fluorescence
(XRF)

SXM
shown to

scale
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Radiation Hinge Coded
= Aperture
Mask Frams Thermal Strap Mask

(not visible)

Franglbolt Detector
(inside Assembly
housing) Mot
(DAM)
Radiator .
Radiator
Standoffs Truse
Thermal
Isolation
Flexprint Layer (TIL)
Cabling
DAM
Electronics Thermal
Box Detector Assembly Isolation
Support Structure Layer (TIL)

(DASS)
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+
@S

SRR SDR SysML Models created for SRR, SDR, and PDR
January 24, 2012 April 24, 2012
\ / PDR CDR
January 31, 2013 February 18-20, 2012

* SysML models created at SRR, SDR, and PDR

 From Fall 2011 through Spring 2012, REXIS team
composed primarily of undergraduates

— With grad students and faculty mentors

* From Summer 2012 to present, REXIS team composed
primarily of grad students

— With faculty mentors and undergraduate volunteers

23
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Side \"ICW Hot TOp \;lew HOt
Radiator Radiator
SRR SDR
COld January 24,2012 April 24, 2012 PDR CDR
Radiator \v v/ Januaryv;l. 2013 February;&m.mlz
\ / 2012 2013
Cold
Radiator .
Radiation * SRR design largely reflects
Cover .
proposal design
Detector L N ———r =— | Fe-55
Assembly Thermal Insulation Source
Mounting
Bracket MEB Heat (\‘odcd Apcrturc“ Mask Support
Strap Mask ) ~+-Frame

Mask/Shield
Support Structure

Model Statistics

[ ]

28 parts Optical Bench

Side Shield/ e
‘\ L “

e 109 po rts l;y}l:: Insulating _|

_|_Detector
ol Electronics
4 xCCID-41
Detector Plane
24




REXIS SDR Design

Note: Side shield removed to show interior

Coded Mask (Au)

Sun Shield (G10)
(SXM located on
Sun Shield)

Truss
(Cold Radiator)

Radiation Cover

CCID-41 Array

Detector Assembly
Mount

Electronics Box
2 CCD Boards
-1 MEB

Model Statistics

* 57 parts
210 ports

—— Imaging
— Data Processing SRR SDR
- S January 24, 2012 April 24, 2012
Structures/Thermal PDR CDR
Mask Frame \ / January 31, 2013 February 18-20,2012
2012
Side Shield

Hot Radiator
(A1, G10)

Thermal Isolation

/ Layer (G10)

Main Electronics Board
-FPGA -PCB -ROM
RAM Microcontroller

- RS-422 to spacecraft
- Flex Print & Cameralink (FPE)

Coded Mask

Side Shield

Truss

(Cold Radiator)

Detector
Assembly
Support
Structure

Electronics B

Electronics Box coupled to S/C deck
Removal of Cold Radiator
Addition of Radiation Cover

— Imaging
—— Data Processing
—— Structures/Thermal

360° External View of REXIS

(Au) Mask Frame

Sun Shield (G10)
€——— (SXM located on
Sun Shield)

Hot Radiator
(Al, G10)

Thermal
Isolation Layer
(G10)

ox —_—
180° CCW Rotation

25



I REXIS PDR Design SE

Model Statistics ° Eeg‘ova' of Hot R
a i ato r January 24, 2012 April 24, 2012 PDR CDR
[ ) 1 5 O a rt S \ ,/ January 31, 2013 February 18-20,2012
P + Standoffs for v v

* 577 ports thermal isolation

Coded
Aperture
Mask

Mask
Frame

Access Port

Radiator ——>

Radiation
Cover

Truss

Detector
Assembly

Side Thermal
Shields St Mount (DAM)
rap
Thermal Detector
Isolation Assembly

Support
Structure
(DASS)

Electronics Layer (TIL)

Box
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Parts per Assembly

/ e AN
== Electronics Box
=r=Truss
=== Radiation Cover
/ == Main Electronics Board
=@ Detector Electronics
L -

SRR SDR PDR

un
=]

5

1]
=]

Mumber of Parts per subassembly
P
(=1

=
=
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Design History Statistics

+*

Ports per Assembly

Mumber of Ports per subassembly
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/
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== Electronics Box
=r=Truss
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=@=—Detector Electronics

mnfe S
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Ports Per Part in each Assembly

<
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=@—Detector Electronics
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* How well does interface uncertainty predict
future growth or size of assemblies?

[dcer;;eastv;gfi';t?;dji ic;fn}\\ Case Study Methodology
history ~> 1. Incorporate interface uncertainty
in REXIS SysML models
_7 2. Quantify interface uncertainty in
[Inspectmodelsto extract}/// each REXIS assembly
=53

information that is helpful | _ . . ]
to the design process Examine correlation of interface
uncertainty to future assembly
| growth
Measure how the new _~»4. Examine correlation of interface
information can improve |~ - . . .
uncertainty and final assembly size

the design process
31
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Step 1: Step 2: Step 3: Step 4:
Modeling REXIS Quantifying Interface Predicting Predicting
in SysML Uncertainty Assembly Growth Assembly Size
1—N;, U = Interface Uncertainty
IU=——=""where: N, =Number of Interfaces at the Lowest Level of Abstraction
LA

U, = Interface Uncertainty of Assembly A

ibd [Block] System [ Quantifying Interface Uncertainty J_J
part 3:Part 3 assembly a : Assembly A
ZProxys EQroxy=
[] Port 1 : Digital Data Port 2 - Digital Data [:I part 1: Part 1
Pyt 1
. Digital Data T |
Port 1 : Information
EProxys
- Infarmation
EProxys
eproxys ZProxys Faort 1 : Information
. 1
L Port 2: Bolt : Bott Fort 2 Bolt .
1 part 2 : Part 2
1 .
A— 73
3
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Step 1: Step 2: Step 3: Step 4:
Modeling REXIS Quantifying Interface Predicting Predicting
in SysML Uncertainty Assembly Growth Assembly Size

Ports Per Part in each Assembly over Time

=¥=Spectrometer
== DAM

== FElectronics Box

Truss

=== Radiation Cover

==M ain Electronics Board

=== Detector Electronics

Interface Uncertainty Percentage

SRR SDR PDR
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Step 1: Step 2: Step 3: Step 4:
Modeling REXIS Quantifying Interface Predicting Predicting
in SysML Uncertainty Assembly Growth Assembly Size

Increase in Parts or Ports As Predicted By Interface Uncertainty at SRR

200

=
co
o

=
o]
a

'—\
S
o

=
]
o

=
Qo
=]

Increase in Parts or Ports from SRR to PDR

¢ Parts
80
u M Ports
N Y O
40 *
20 -
L 4
‘s ¢ ¢ L 2
U T T T T 1
0% 20% 40% 60% 80% 100%

Interface Uncertainty Percentage at SRR

Interface uncertainty alone did not predict future
increases in parts or ports
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Step 1: Step 2: Step 3: Step 4:
Modeling REXIS Quantifying Interface Predicting Predicting
in SysML Uncertainty Assembly Growth Assembly Size

Total Assembly Size As Predicted By Interface Uncertainty at SRR

250
[
[a's)
& 200
(a1
]
m
v
€
& 150
)
v
E # Parts
(a1
« 100
E [ | m M Ports
2
£ m N
2 50 +
|
¢ L 4
0' . ¢
0 T T T T 1
0% 20% 40% 60% 80% 100%
Interface Uncertainty Percentage at SRR

Interface uncertainty alone did not predict future size
of an assembly 35
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* |nterface uncertainty alone unable to predict future
assembly growth or final assembly size on REXIS

— Some subassemblies did show expected trend but not
where parts matured into multiple parts and interfaces

— May work well as part of a more comprehensive metric
that also captures part uncertainty

* With tweaks, interface uncertainty may be predictive

— Using fraction of abstract interfaces to measure
uncertainty unrealistically weights each interface evenly

— Some interfaces evolved into many new parts and
interfaces while other evolved into only a few parts or
interfaces

36
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* Can tracing desigh consequence through the
system improve decision making?

[d‘g;;;e;v;g?;;;:ﬁ;;;;;}\\ Case Study Methodology

history = 1. Incorporate design consequences
into REXIS SysML models

. 2. Inspect models to find design

{} insights

DTS BTN e se: 3. Create alternative timeline based

/ on information extracted from the

| S/ model

[‘n'\goe;i:;;:i\gnt?;;eov:e } 7 __»4. Compare alternative timeline to
historical timeline

the design process
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Historical Thermal System Timeline

Electronics Box coupled Radiation Cover moves

Use of truss as radiating

surface for detectors to spacecraft deck to top of instrument
Two radiators Two radiators One radiator One radiator
Two thermal straps Three thermal straps One thermal straps One thermal straps
One isolation layer One isolation layer One isolation layer Two isolation layers
SRR SDR PDR CDR

Mask Tensioning

é 1
Frame Truss (Cold

Radiator) Radiator
Sun Shield —— <«—————— Hot Radiator \
Heat Strap (DASS D S — Heda_t Strap (EB to
to truss x2) / radiator) Thermal Strap

CCDs Detector Assembly
Support Structure (DASS)

Thermal Insulator

DAM

Torlon Thermal
Isolation Layer

DASS

Titanium Thermal

EB ;
Isolation Layer

Electronics Box

OSIRIS-REx S/C Deck

CDR Thermal Design 38

SDR Thermal Design
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Step 3: Step 4:
Constructing Comparing
Alternate Timeline Timelines

H *
Illll Inspecting the SRR Model el

Step 1:
Modeling REXIS
in SysML

i [Block] Wssion Cantext [ SRR Thermal Cortert Drivers 1] _po = -
Hot Radiator : Optic i

Step 2:
Inspecting the Model

=
e - - : Optical Codd Radiator : Optic:
I x —
I - === "l Ontical |
Optic: |
| Optical | ! ’\ proxys |
I f - == rexis : REXIS
| - I
| f | Spectrometer : Spectiometer
I eproxys I I tower : Tower e e iD, Assemb
I _ WO | [ eproxys
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Inspecting the SDR Model

*
SEL
NN

Step 1:
Modeling REXIS
in SysML

Step 2:
Inspecting the Model

|
T

Step 3:
Constructing
Alternate Timeline

rexis : REXIS

spectrometer : Spectrometer

Step 4:
Comparing
Timelines

Removal of spacecraft thermal isolation requirement not
reflected in design. Opportunity to introduce second thermal
isolation layer.
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SysML model of Thermal System Design at SDR
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Step 1:
Modeling REXIS
in SysML

Inspecting the Model

Step 2:

Step 3:
Constructing
Alternate Timeline

Step 4:
Comparing
Timelines

Use of truss as radiating
surface for detectors

Two radiators
Two thermal straps
One isolation layer

SRR

Electronics Box coupled

Radiation Cover moves

Two radiators
Three thermal straps
One isolation layer

One thermal straps
One isolation layer

One radiator

to spacecraft deck
SDR

One radiator
One thermal straps
Two isolation layers

to top of instrument
PDR

=

* Couple Electronics Box to Deck
* Remove Hot Radiator

=)

e Add second
thermal isolation

—  CDR

loyes

Removal of spacecraft
isolation requirement

Two radiators
Two thermal straps
One isolation layer

SRR

Addition of second
isolation layer

Radiation Cover moves
to top of instrument

One radiator
One thermal strap
One isolation layer

One radiator

One thermal strap
Two isolation layers

SDR

One radiator
One thermal strap
Two isolation layers

PDR

CDR
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Step 1: _ Step 3:
Modeling REXIS Ins ect?r:e?cﬁe: Model Constructing
in SysML P g Alternate Timeline

Comparing
Timelines
Historical Thermal Design Timeline
Use of truss as radiating Electronics Box coupled Radiation Cover moves
surface for detectors to spacecraft deck to top of instrument
Two radiators Two radiators One radiator One radiator
Two thermal straps Three thermal straps One thermal straps One thermal straps
One isolation layer One isolation layer One isolation layer Two isolation layers
SRR
Model-Based Design Timeline
Removal of spacecraft Addition of second Radiation Cover moves
isolation requirement isolation layer to top of instrumen
Two radiators One radiator One radiator ) One radiator
Two thermal straps One thermal strap One thermal strap One thermal strap
One isolation layer One isolation layer Two isolationlayers Two isolation layers

SRR

Model-based design timeline is more efficient than
historical design timeline
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* Design consequence tracing revealed
information about the REXIS design before it
was known historically

* |Information extracted from the system models
reduced design iteration and rework

Modeling design consequences on REXIS provides the
opportunity to make the design process more efficient
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Ill" Overview

e Research Overview

— Motivation
— MBSE/SysML Introduction

 Methodology
— Metric Description

REXIS Overview
— Science Goals
— Design History
* Case Studies

— Interface Uncertainty Case Study
— Design Consequence Case Study

e Conclusions
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* Thesis investigated how model-based systems
engineering can improve the design process

e System models captured topological
information

— Interfaces, interface uncertainty, and design
consequences

* |Interface uncertainty not a good predictor of
future REXIS assembly growth or final size

* Desigh consequence tracing highlighted
important REXIS design information

Implementation of MBSE on REXIS would have
improved the design process




Thank You!

Questions?
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